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L E m R  TO THE EDITOR 

Polynomial perturbation of a hydrogen atom 

R P Saxena and V S Varma 
Department of Physics and Astrophysics, University of Delhi, Delhi-1 10007, India 

Received 28 September 1981, in final form 9 December 1981 

Abstract. We study the ground state energy of the s-wave hydrogen atom with the 
polynomial perturbation 2Ar + 2AZrZ. The usual Rayleigh-Schrijdinger perturbation series 
in powers of A for the ground state energy has been shown to fail for A C 0. We construct 
explicitly a perturbation series in powers of (-A)-*" for A <O and show that it agrees 
well with the results of variational and Hill determinant calculations. 

The ground state of the s-wave Hamiltonian for a hydrogen atom with a polynomial 
perturbation 

H =  _ _ _ _ _ _ _ _  d2 1+2Ar+2A2r2 
2 dr2 r dr r 

has been studied by Killingbeck (1978). This Hamiltonian possesses the exact ground 
state energy and wavefunction given respectively by 

= -$+ 3h 

1,4(" = exp(-r - A r 2 ) .  

Killingbeck (1978) has verified by explicit calculation that the first two terms in the 
Rayleigh-Schrodinger (RS) perturbation series in powers of A for the ground state 
energy (E''' = Z, E,A ") yield exactly equation (2a) and that the coefficients c2 and c3 
are identically zero. Killingbeck (1980) has also checked numerically that all E" for 
3 d n d 16 vanish. It would thus appear that the RS series for the ground state energy 
for all A is given by equation (2a). However, although equations (2) continue to 
provide a mathematical solution to the Schrodinger equation for the Hamiltonian (1) 
for A C 0, they cannot correspond to the physical ground state of the system since the 
wavefunction is no longer square integrable. Thus the RS series fails to give, for no 
apparent reason, the ground state of the system for A CO. This is true despite the 
fact that the potential remains confining for both positive as well as negative values 
of A. 

In this letter we begin by pointing out why one should in fact expect the RS series 
for the energy in powers of A to break down for A C 0. We then show that a perturbation 
series for the ground state energy in powers of IAl-1'2 yields not only equation (2a) 
for A > 0 but also gives for A < 0 an expression which is different from equation (2a) 
and which agrees to a considerable degree of accuracy with the results of variational 
calculations as well as with numerical computations based on the method of Hill 
determinants (Biswas et a1 1971,1973) for all A c -2. 
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Although the energy spectrum of the Hamiltonian (1) is discrete and extends to 
+a3 for both positive and negative non-zero values of A, at A = O  it collapses to the 
spectrum of the s-wave hydrogen atom, i.e. a discrete part lying between --; and 0 
and a continuum extending all the way to +a. Thus the spectrum of the Hamiltonian 
(1) changes drastically as we go from positive to negative A at A = 0. It is therefore 
unrealistic to expect the ground state energy to be representable by a single analytic 
function, both for positive as well as negative A .  In addition, scaling arguments (Datta 
and Mukherjee 1980, Simon 1970) show that there must exist a convergent series 
expansion for the energy in powers of A --1’2 valid for large A ; consequently the same 
power series cannot be valid both for positive as well as negative A .  

We begin with two remarks. Firstly, the ground state of the system for A > 0 can 
be obtained by a simple translation of the ground state of the s-wave harmonic 
oscillator, and therefore it is not surprising that the ground state of the present problem 
admits an exact solution. To see this consider the Schrodinger equation for the s-wave 
harmonic oscillator in its ground state 

exp(-Ar’) = 3A exp(-Ar’l 

and the identity 

(-g z- a exp[-A (r + a) ’ ]  = exp[-A ( r  + aI2] .  ) 

( 3 )  

(4)  

If we now use the identity (4) with a = 0 in equation (3), then perform the translation 
r - + r + l / 2 A  and use the identity again, we obtain immediately the result given in 
equation (2). 

Secondly, the ground state energy of the Hamiltonian (1) is bounded from below 
by 

E“” 3 - 1 ( 5 )  

for all A.  This result is immediately evident piovided the Hamiltonian (1) is written 
in the form 

and it is noticed that the second term on the RHS is non-negative for all A.  Equation 
( 5 )  can be easily generalised to obtain lower bounds for the excited states. 

We now construct the RS perturbation series for the ground state energy E“” for 
A < O  in powers of To this end, we transform to the variable r(--A)-”* so 
that the Schrodinger equation becomes 

W O  + VI4 = -(E/A )4 ( 7 )  

where 

1 d 2  I d  , 
2 dr r dr 

f$o=--T-- -+2r-  

V =  - ( -A)-1’2( l / r+2r) .  
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We write the ground state energy as 

where the unperturbed energy is ELo' = 3 and the corresponding eigenfunction is 

10) = (2/v1314 exp(-r2). 

It is evident that in the expression for the energy, the coefficient of the term linear 
in A is -3 which is clearly different from the corresponding term in the RS series for 
positive A. The first-order correction to the ground state energy is immediately seen 
to be 

E;') = 4(2/v) '12.  (9) 
Thus there is a term proportional to (-A)'12 in the series for the ground state energy 
for A < 0 which was absent for A > 0. 

We now use the method of Dalgarno and Lewis (1955), suitably modified to take 
account of the fact that (0) VlO) # 0, to calculate the second-order correction. The 
ground state energy to this order E$') is given by 

(10) I f 2  7 E(O)(A) = -3A - 4 ( - 2 A / v )  +~-(16/v) In 2. 

This perturbation result is expected to be good for A large and negative. In fact, 
even for A = -2 it agrees with the numerically computed eigenvalues to an accuracy 
of about 2%. The series clearly breaks down for A lying between -2 and 0. 

We wish to point out that if a similar perturbative calculation is attempted for 
A > 0 using the transformation r -* (A)-'12r, one recovers again the exact result E''' = 
-f + 3A. Since in this case (01 VlO) = 0, it is possible to extend the method of Dalgarno 
and Lewis (1955) to calculate the third- and fourth-order contributions to the ground 
state energy and verify that these are identically zero. It is expected that higher-order 
contributions will also vanish identically. 

An alternative approach is to use the terms (2Ar-r-') in (1) as the formal 
perturbation; the energy series Z has so = 31A I and 

The en are non-analytic at A = 0, but yield the correct different A series for A > 0 and 
A <O. 

To evaluate the eigenvalues more accurately in the reginre of A not covered by 
the perturbation result, we now set up a variational scheme. We start by writing our 
Hamiltonian as 

H = fi +4Ar (12)  
where 

f i$(r )  = (-;-3A)$(r) 
with 

&r) = exp(-r +Ar2)  A C O .  (13)  
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The use of J ( r )  as a trial function leads to an upper bound on the ground state energy 
given by 

i3 erf c[ (-2A )- ‘’*I 
i2 erfc[(-2A)-’l2] 

E ‘ o ’ ~ - $ - 3 A  -6(-2A)’/* 

where the functions i” erfc(z) are repeated integrals of the error function as defined 
in Abramowitz and Stegun (1972). The above expression agrees with the perturbation 
result to order ( - A ) ” 2  for A + --CO. It also tends to -1, the energy of the ground state 
of the hydrogen atom, as A + 0. These two features encourage us to use a set of trial 
functions given by 

in a linear variational calculation to obtain better upper bounds on the ground state 
energy for all negative A .  

In table 1 we list, for various negative values of A, the results of second-order 
perturbation theory, variational calculations using the trial functions given in equation 
(15) and compare them with numerical computations of the ground state energy using 
the method of Hill determinants (Biswas et a1 1971, 1973). The high degree of 
accuracy of the perturbation result for A < -2 is evident. 

Table 1. Ground state energies for the Hamiltonian (1) for various negative values of A .  
The Hill determinant results are converged to the last significant place, while the best 
available variational results have been quoted. 

Perturbation Variational Hill 
A resultt result determinant 

-20 480 60 983.234 05 60 983.234 37 60 983.234 026 772 
-2 560 7 518.489 34 7 518.489 27 7 518.489 264 276 

-320 902.877 85 902.877 62 902.877 617 716 
-40 99.784 77 99.784 077 55 99.784 077 513 
-5 7.833 3 7.831 279 461 5 7.831 279 461 4 
-2 1.456 3 1.452 916 838 14 1.452 916 838 11 
-1 -0.221 7 -0.226 772 769 81 -0.226 772 769 86 
-0.1 -0.739 -0.765 801 -0.765 826 903 96 
-0.05 -0.59 -0.649 000 -0.649 106 898 05 
-0.02 -0.42 -0.559 999 2 -0.559 999 998 3 

t E r ’  = 3, E:” = 3.191 538, E;’’ = -3.016 96 x lo-* 

We mention in passing that the perturbation series (10) exhibits an energy minimum 
at A = -8/9.rr which is quite close to the minimum at A = -0.28 found in the Hill 
determinant calculations. Further, one can utilise the difference between the perturba- 
tion results and the Hill determinant results at the largest value of -A to estimate 
ELo’ in equation (8). Such an exercise yields the value E:’’ = 0.4278 x lo-*. If we 
now use the geometric approximation (Killingbeck 19771, i.e. E?’(l+ 
E~o’/J-AE~o’)-’, in place of Ep’ in the perturbation series, we obtain much better 
agreement with the energy eigenvalues. In particular, at A = -1 the perturbation 
result is now -0.2269. 
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We wish to conclude by remarking that similar perturbation expansions in lh 1-l” 

for the excited state energies exist and are currently being studied. 

We thank S R Choudhury and P K Srivastava for many useful discussions. 
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